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A combined one-dimensional and two-dimensional (“1 f D”) description of toroidal and 
axisymmetric plasmas is presented which is based essentially on an equilibrium solver resort- 
ing to the fast Buneman invertor (“equilibrium module”) and two one-dimensional transport 
codes describing the protium, deuterium, tritium, and plasma energy inventory (“plasma 
module”) and accounting for three impurity species (“impurity module”); it is employed to 
compute the time evolution of Tokamak plasmas. The attempt was made to achieve a consis- 
tent modelhng of the transport and equilibrium phenomena in a plasma which interacts with 
the peripheral devices for, e.g., conlinemenf plasma heating, and limitation of the plasma 
aperture. The equilibrium solver is connected to a coil submodule computing the poloidal held 
coil currents maintaining the designed plasma shape approximately. A surface current density 
accounting for the magnetization of the iron core and the yokes is calculated by means of the 
module for the transformer iron. This module is linked to the equilibrium solver as well so 
that consistency between the coil currents, the plasma current distribution, and the magnetiza- 
tion of the transformer iron is achieved. The “scrape-off module” resorts to a radial model for 
the limiters. The modules for additional heating account for a full beam geometry within a 
simple approach for the RF-heating. The neutral atomic and molecular hydrogen species are 
described by a multidimensional Monte Carlo code or, alternatively, by the fast lD-code 
SPUDNUT (“neutral gas module”). The MHD behaviour is estimated by evaluating the time 
evolution of the Mercier and the resistive interchange criteria (“stability module”). The 
calculations which are based on TEXTOR, JET, and INTOR data resort preferentially to the 
equilibrium, the coil, and the transformer module. It is shown that, e.g., in case of a specific 
shot, the measured-time evolution of the currents in the poloidal field coils of TEXTOR can 
be reproduced within an accuracy of 8 %, only if the nonsaturated transformer iron is accoun- 
ted for. The main results concerning JET and INTOR are: The performance of the JET- 
plasma is strongly influenced by the impurities essentially due to sputtering at the (noncar- 
bonized) linear material (iron). The radiate 50% of the input power. These losses and the 
conduction losses limit the maximum plasma temperature at around 10 keV. Around the end 
of the discharge the transformer core is almost saturated and the nonsaturated yokes are 
important for the flux function distribution. The analysis of the INTOR-plasma shows that at 
a burn temperature T, = 10 keV the fusion power (122 MW) exceeds the line radiation, 
ionization, conduction, and convection losses by 11 MW. Due to the high pressure gradient, 
the plasma turns out to be diamagnetic in the total cross section; the toroidal field, however, 
is reduced at the magnetic axis by 4% of the vacuum value only. 0 1989 Academic Press, Inc. 
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1. INTRODUCTION 

According to present theory of toroidal axisymmetric plasmas [l-7], the equi- 
librium quantities such as the toroidal and poloidal current densities and the 
correlated magnetic fields can be calculated self-consistently with the transport 
phenomena. The equilibrium quantities [8-121 are determined mainly by the 
poloidal field coil design, the plasma current, the pressure, and the q-profile; these 
profiles are provided by the transport processes in the central core. The energy 
inventory depends on the transport by conduction and convection, on radiation, 
and on the sources due to ohmic and additional heating by neutral injection, 
RF-heating methods, and fusion [3, 5, 10, 13-181. The particle inventory emanates 
from sources controlled from the outside as pellet injection, gas pulling, neutral 
injection, and from the recycling processes, the perpendicular diffusion, and the 
parallel convection to the limiters or the divertor plates [19-221. The hydrogen 
inventory in the first wall which is closely related to the recycling processes depends 
on the energy spectrum of the neutral particles, on the surface and bulk properties 
of the wall material, and might be comparable to or even larger than that of 
the plasma [23-251. The transport phenomena listed above and the complex 
interaction of some of them had been treated analytically and numerically in many 
previous papers, e.g., [3, 5, 7, 14, 191. 

During the time evolution of the discharge the flux surface geometry changes 
continuously, and in general no adiabatic variable is available among the com- 
monly used parameters II/ (poloidal flux function), x (toroidal flux function) and V 
(volume of the flux tube II/). Therefore an iterative procedure consisting of a predic- 
tor step and a sufficient number of corrector steps [6] is to be applied in general. 
Hence the calculation iterates between the transport steps advancing the parameters 
IL, x, nj (the densities, j= 1, ,,,, 6), T,, and Ti (electron and ion temperatures) with 
respect to a fixed flux surface geometry, and the equilibrium steps updating the flux 
surface geometry and consequently the flux functions $ and x. The volume V 
changes according to the evolution of I,$ and the parameters nj, T,, and Ti are 
advanced by adiabatic transformations. In this way, e.g., the dia- or para- 
magnetism of the plasma column and the temporal evolution of the equilibrium 
during adiabatic compression can be assessed. We note that in the examples just 
given, mainly the toroidal flux is affected. This confirms that x cannot be treated as 
an adiabatic variable. 

If flux-conserved states are reached, during which the q-profile is frozen in, the 
f-function, which is closely related to x and therefore accounts also for the 
diamagnetic effects due to the increasing pressure, has to be computed consistently 
with q(11/) rather than prescribing it. Hence the equilibrium calculation iterates here 
between the Grad-Shafranov equation and an ordinary differential equation essen- 
tially needing the pressure and the q-profile as an input [3]. For the same reason, 
these profiles are chosen to link the transport and the equilibrium code [2,3]. In 
this paper the plasma aperture is defined by limiters, and a possible separatrix is 
located beyond the outermost flux surface, therefore only closed flux surfaces are 
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available and the flux surface averages can be computed in the total plasma volume. 
In the case of divertor conligurations the separatrix is to be excluded from the com- 
putation of the flux surface averages. As the limiting values just adjacent to the 
separatrix can be computed with sufficient accuracy, divertor configurations can be 
treated in principle by the same method to a good approximation. Nonsurface 
quantities such as the toroidal current density [lo], which depend rather sensitively 
on the flux surface geometry and do not become frozen during flux-conserved 
states, are not envisaged here as a link between the transport and the equilibrium 
code. 

Considerable progress [7] was achieved in the coupling of the Grad-Shafranov 
equation and the lD-transport equations. In this approach mainly the voltages 
of the confining and magnetizing circuits, the geometry of the iron core for the 
transformer, and the power deposition profiles are used as an input. However, this 
procedure might yield unrealistic (hollow) plasma current distributions and it is 
difficult to maintain a prescribed plasma shape. 

Instead of choosing the driving voltages as an input, in the following mainly the 
inverse problem is envisaged. At each equilibrium step the coil currents maintaining 
certain prescribed positions of the plasma boundary are computed iteratively by the 
coil submodule. In a predictor step this model estimates the coil currents by means 
of the surface current density in a dense coil fence [9] which shapes the plasma 
exactly. During the corrector steps the computed and the designed plasma shape 
are compared, and from the deviation of the two shapes in $-space the corrections 
of the coil currents are computed. The advantage of this procedure is that there are 
no restrictions concerning the coil positions. The vacuum magnetic field might be 
strongly distorted, if the transformer is equipped with an iron core [7]. Employing 
the discontinuity relation for the tangential component of the magnetic inductance 
an integral equation of Fredholm’s second kind is derived for a surface current den- 
sity, simulating the magnetic action of the iron. The computation of this current 
density is fast enough to be included in the iteration scheme of the equilibrium 
solver, so that consistency between the core’s magnetization and the magnetic field 
generated by the plasma and the coils is achieved. 

The advantages of the coupled code are: 

1. The code is an extension of the lD-radial transport code [23], the 
modules of which stay almost unchanged. These modules allow a detailed analysis 
of the charged and neutral particle densities, the energy inventory, and of the 
“q”-diffusion. In practice the degree of the coupling between the equilibrium and the 
transport calculation should be adjustable to the specific phase of the Tokamak 
operation, i.e., the heating, ignition, or burn phase. This can be achieved by chang- 
ing the time interval between the equilibrium calls and by modifying the accuracy 
prescriptions. For some questions at hand a consistent plasma description is not 
necessary. In this case the modules can be used independently. 

2. The expensive solution of the PDE and ODE concerns the rectangular 
domain containing the plasma only. The iron core and the coils are accounted for 
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by means of the boundary values which are to be imposed at the rectangular 
boundary. Thus a high resolution in the plasma domain is possible, which is needed 
for the stability analysis. 

3. In the case of the free boundary value problem, briefly outlined in 
Section 6, the system of one-dimensional diffusion equations is restricted to the 
plasma volume. Outside the plasma zero-dimensional circuit equations resorting to 
the time centered inductivity matrix can be employed. 

2. COMPUTATION OF THE EQUILIBRIUM MAGNETIC FIELDS AND 
CURRENT DENSITIES INSIDE THE PLASMA 

The force densities due to the toroidal and poloidal current densities and the 
corresponding magnetic fields provide the plasma equilibrium [ 1-3, 71, the time 
evolution of which emanates from the resistivity, causing the “q diffusion” [3, 61 
and the time dependence of the plasma pressure and of the coil currents. If the 
boundary values of the $-function (Sections 3, 5, or 6), the pressure, and the 
q-profile are provided, it is possible to compute the equilibrium quantities inside the 
plasma [Z, 31. There the magnetostatic equations can be combined to the 
Grad-Shafranov equation, a partial differential equation (“PDE”) 

A*$= -poR 2 p d df %-f @. 

The operator A* is defined by 

(2.2) 

II/ is the poloidal flux function, p,, the vacuum permeability, p the pressure, and the 
f-function is defined by f = p,, RH,; R is the distance from the axis of symmetry, z 
the vertical coordinate (Fig. l), H, the toroidal magnetic field. 

The PDE (2.1) is solved in a rectangular domain (Fig. 1) by means of the fast 
Buneman invertor [26]. This domain contains the plasma but not the coils or the 
iron core. The boundary values of the flux function are either prescribed at each 
iteration step as in the case of a fixed plasma boundary (Section 3) or computed 
from the coil currents and the plasma current distribution as in the case of the semi- 
free boundary (Section 5). As a flux surface average of the PDE (2.1) we obtain the 
ordinary differential equation (“ODE” [ 1,2] ) 

(2.3) 
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FIG. 1. Geometrical parametrization of the boundary C,, of a D-shaped axisymmetric plasma by the 
excentricity e = uz/a,, the ellipticity E = b/a, the D-shape d = 1,/a, and the minor half-axis a. The plasma 
is surrounded by the coil fence C,. The sectors f, of this fence are assigned to each coil group gj 
(i = 1, . . . . 4). As specific examples the coil groups of JET are depicted, which are treated as a closed con- 
liguration. The distances of the points B,, located on the designed plasma boundary, from the analogous 
points on the computed boundary are checked during the iteration in the flowchart of Fig. 2b. The 
points r, are used as testpoints where the sectors of the coil fence and the corresponding coil groups 
generate the same flux function. 

for the flux profile II/(V). The prime denotes the derivative with respect to the 
volume V, 

(2.4) 

and 

J/ 

are averages over the flux surface, $ = const [3]. The quantity Q is 

Q = (47~)~ q. 

(2.5) 

(2.6) 
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The solution method iterates between the PDE determining the geometry and the 
ODE (2.3) providing the flux profile, until convergence concerning the plasma 
current and the plasma shape is achieved. 

During the iteration the minimum value of the flux function, $(O) (“target 
value”) is adjusted to account for the plasma current which is prescribed in the 
fixed boundary and semifree boundary value problem envisaged here. The plasma 
current is [2] 

(2.7) 

R. is the distance of the magnetic axis/from the axis of symmetry and pP is the 
effective plasma radius; the analogous radius of an arbitrary flux surface is 

p = &2x2R, (2.8) 

and pP is obtained from (2.8) with V= VP, the plasma volume enclosed by the 
outermost flux surface. The quantity 

fj =rri2 
p PoRo ap 

is the effective poloidal field. 
The new target value after the ith iteration step is 

(2.9) 

(2.10) 

I?!’ is the field after the ith iteration and fia)(pp) is the boundary value according 
to Eq. (2.7) with the most recent average value 

(2.11) 

The iteration according to (2.10) ensures that the current Z, given by Eq. (2.7) 
approaches the prescribed value step by step. Convergence concerning the plasma 
current is achieved if 

Max IZp -LI IZ;,-LA 

[ z, ’ Id 1 <El, 
(2.12) 

J, is defined by Eq. (2.7) with the most recent values of all quantities involved 
there, JI, is the plasma current computed from the two-dimensional current 
distribution 

(2.13) 
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Id is the prescribed plasma current and E, is a prescribed accuracy parameter 
(.sl = 1% in Section 10). The computation of the boundary values for the PDE and 
the convergence check concerning the plasma shape depend on the specific 
problems to be solved. These are discussed in the Sections 3, 5, and 6. 

2.1. Local and Global Pressure Balance 

The accuracy of the equilibrium calculation may be checked by the local and 
global pressure balances which are 

j,(R 2) H,SR 2) = -i VP + j,(R, z) H,(R z) (2.1.1) 

and 

&J(P) I,(P) = -; g + j,(p) A,(p), 

respectively. 
The poloidal field H,,, the poloidal current density j, and the toroidal field H, are 

given by 

and 

H,(R, I)=% 

1 af I~I 
j,(R, z)= ---- 

ha* R 

H, =f$. 

(2.1.3) 

(2.1.4) 

(2.1.5) 

The analogous effective toroidal field A, and the current densities jp, j, are given by 

(2.1.6) 

(2.1.7) 

(2.1.8) 

They depend on the flux surface label p only; p stands for “poloidal,” and t for 
“toroidal.” x is the toroidal flux function. The toroidal current I,,, and the poloidal 
current ZpO,, both within the flux surface p, are 

Z,,,(P) = 271pR; &P) (2.1.9) 



TOKAMAK PLASMAS 105 

and 

Zpd =30 -f)=271 ROH, -j& ( R(P) . 1 (2.1.10) 
0 

(2.1.9) is a generalization of Eq. (2.7). The index “0” denotes the magnetic axis. 
To simplify the notation besides the magnetic fields H,, H,, j7p, and R,, the 
corresponding inductions B,, B,, B,, and 8, are introduced in the following and 
may be used in the preceding equations as well. 

We note that in low /3 cases the pressure gradient is small compared to the j x B- 
force densities. Comparing Vp with the difference of the j x B-force densities might 
reveal a large inaccuracy not inherent to the calculation. This can be avoided by 
combining the pressure gradient with one of j x B-force densities, as in Eq. (2.1.1) 
or (2.1.2). The LHS and RHS of Eq. (2.1.1) and (2.1.2) were computed in the case 
of specific examples given in Section 10. These show that the relative deviations 
between the respective maximum force densities are less than 2%. 

2.2. Time-Step Control 

The time step (At,), between the (n- 1)th and the nth equilibrium call 
(Section 8) can be predicted by means of the pressure and q-changes between these 
calls; (d t ;, ), reads 

with 

c(f = Max [ 
qnb)-qn-I(P) P,(P) - Pn- I(P) 

Wq,b) + qn- lb))’ WPn(P) + Pm- lb)) 1 . 

At,,,,, is a prescribed upper limit ( = 100 ms). If the ODE-PDE iteration fails to 
converge, the time step is repeated with one-half of its original value. (At,), = 
10 ms is prescribed. 

3. FIXED BOUNDARY VALUE PROBLEM 

The “fixed boundary” version of the equilibrium module computes a plasma 
equilibrium belonging to a prescribed D-shaped boundary. A rectangle (Fig. 1) is 
used as the mathematical boundary. W, and W, are the rectangle’s width and 
height, respectively. It is convenient for the following to use a Cartesian coordinate 
system (x, y) anchored in the center of the rectangle. The flux function 1,5(x, y) is 
prescribed on the rectangular boundary such that the plasma edge J/ = 0 agrees 
with the designed plasma within a given accuracy limit s2 (Eq. 3.10). 

As the pressure and q-profile evolve in time these boundary values have to be 
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adjusted at each call of the equilibrium code to maintain the same plasma shape. 
Here a D-shaped plasma cross section (Fig. 1) is defined by its horizontal extension 
2~7, the ellipticity E = b/a (26 is the vertical extension), the excentricity e = a, /a*, and 
the D-shapeness d= i,/az. a2 and a, are given by the straight line connecting the 
maximum A, with the minimum A r. Id is the part EA, of the straight line connect- 
ing the point E with the rectangle’s corner C. 

Here two analytical options are available to describe the designed plasma shape. 
The first uses the foregoing shape parameters directly, the second employs them 
indirectly to compute the parameters of a closed representation of the plasma 
boundary. 

Two composed ellipses with the major semiaxis b in common and different minor 
semiaxis a,, a2 are used in the case of the first option; i.e., the plasma boundary is 
given by the expressions 

VI2 . WC, (yg2+(;, =I px6x, 

(y3)2+(;)2= 1 x,Qx<----, 7 
(3.1) 

where the origin of the Cartesian coordinate system coincides with the center of the 
circumscribed rectangle. x,, is the distance of the common center of the ellipses from 
the origin 0. The plasma radius p,, is 

&=&ii. (3.2) 

The main drawback of the foregoing definition is that the D-shapeness d cannot be 
prescribed independently; it is connected to the other parameters by 

d=/m. 

Furthermore, the curvature of the boundary changes discontinuously. 
The second option uses the analytical expression [ 111 

($+(g)‘--p L - 3x’y”) + 2 x’4f4 = 1. 

(3.3) 

(3.4) 

The local system (x’, y’) is connected to the system (x, y) of Fig. 1 by y’ = y, 
x’=x-x,. 

By the choice of x1 the boundary is centered within the rectangle. The quantities 
a,., b,., the “triangularity” t, and the “quadrangularity” ry are computed such that 
the boundary defined by Eq. (3.4) has a prescribed vertical extension 26, horizontal 
extension 2a, excentricity e, and D-shapeness d. 
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The boundary values for the e-function on the rectangle are computed from the 
analytical expression 

tih(XY Y) = m, Y) + B(x, Y) + Yk Y) + $1. (3.5) 

The functions F, /I, and y are 

F(x, Y) = 
1 
g,(x, Y, x0, aI, b, r1h7 
g,b, Y, x0, a2, b, r1)a2, 

The functions g, and g, are defined by 

xg:r,; YCV 

XE52i YE:rl 
(3.6) 

x= - w,/2; yEq 

x = w, 12; y E (7 (3.7) 

XEl, +t2; y= f w,/2 

xEt,;Y= +wa/2 

xE52; y= f w,/2 (3.8) 

x= f WJ2; ye?./. 

gAy, b*, r)= [r’- (y/b*)21/r2 

g,(x, a*, r)= [r2- (~-x~)~/a**]/r* 

and the geometrical parameters r,, r2, and r3 are 

r, = W,Jb 

r2=(-W,/2-x0Yal 

r3 = (W,P - xo)/a2. 

The intervals 5,) t2, and q are given by 

We note that in [S] an expression similar to (3.5), suited for circular plasmas, was 
given. a, and a2 account for the deformation; $, , $ *, and $, are used to center the 
plasma within the rectangle. 

During the iteration between the PDE and the ODE the parameters a,, a*, +,, 
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I 

deviations in 
+-space (A$, I 

I 

compare computed 
with designed 
plasma shape 

ODE-Pm solution 

b 

compute current density 
in the confining coil fence 

compute corrections of 
the coil currenls 

1 

compute deviations in 
I’ -space (A $, I 

I 

replacing the iron core 

I I 

return to plasma module 

FIG. 2. Flow charts for the fixed (a) and semifree (b) boundary value problems. In (a) at each step 
of the ODE-PDE iteration, the designed and computed plasma boundaries are compared and the 
boundary values are corrected accordingly. In (b) the coil currents are adjusted iteratively to meet a 
prescribed boundary at specific points. The mirror current density replacing the transformer iron is 
computed at each iteration step. 
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$*, Ic/3 are adjusted such that the plasma edge $ = 0 tits the prescribed boundary 
at 8 points A, 8 shown in Fig. 1 within a prescribed accuracy. 

Let ((x,, YJ, i= 1, . . . . 8), be the coordinates of the intersection points of the 
plasma boundary with the 8 straight lines EA,-, and ((x,,, yL,), i = 1, . . . . 8) the 
analogous coordinates of the designed positions A,-,. The corrections da,, da,, 

Ati, 3 for the next iteration step are 

Ati, =F,, (I(/(x,,, Y/J - bKGS~ YLJ) 

A@z = F,, . (Nx,,, yp,) - $(x,,, YL,)) 

Ati3 = Fti, Mx,,, yp,) - $(xLp YJ) (3.9) 

Aa, = Fz, . W(x,,, yp4) - IcILqT .IL)) 

Aa2 = F,, . (ti(x,,, yp2) - ti(xL,, ~~~1). 

The correction factors F+,-, and F,, 2 are of the order of unity. By optimizing these 
factors it can be shown that in the case of INTOR and JET, convergence (defined 
below) can be achieved within 20 iteration steps if F$, = 1, Fti2 = 1, Fti3 = 1.5, 
Fa,, =0.4, F,, =0.6 are chosen. 

The iteration is stopped if the conditions for the relative deviations 

$=JT<c2, i=l,...,j (3.10) 

(Q = 1% in case of the fixed boundary value problem) are fulfilled. 
Although the other points of the boundary are not checked during the iteration, 

the computed boundary agrees well with the designed boundary if convergence is 
achieved for the eight points only (see Section 10). 

We note that the solution of the Grad-Shafranov equation (2.1) by a finite 
element solver might be superior to the method just described because the plasma 
boundary can be prescribed directly so that convergence concerning the plasma 
shape needs not be checked. However, in the case of the semifree boundary value 
problem, in which tib is computed from the coil currents and the plasma current 
distribution, an analogous procedure is chosen to obtain the coil currents 
iteratively. Hence the procedure used here is a first step for the treatment of the 
semifree boundary value problem (Section 5). The flowchart of the equilibrium 
solver for the fixed value problem is given in Fig. 2a. 

4. CONFINING COIL FENCE 

To predict the coil currents of the closed configurations (Section 5.2) the current 
density j, in the confining “dense” coil fence is (Fig. 1) needed. This current density 
in the fence surrounding the plasma and maintaining the plasma shape can in 

581/80/l-8 
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principle be calculated from the condition that the flux function vanishes at the 
plasma edge. This condition reads 

+ I jp(xp, Y,) C(x, Y; xp, Y,) dx, 4, = 0 
“IJ 

(4.1) 

and is an integral equation for jf(x/, y,.). 
The ranges of integration belonging to the 1st and 2nd integral in Eq. (4.1) are 

the curve C, defined by the coil fence and the plasma volume VP, respectively 
(Fig. 1). (x, y) denote the test points at the plasma edge, (xr, yr) the source points 
on Cf, dl, the line element of C,, and (x,, y,) the source points inside the plasma 
volume. C(x, y; x,, y,) is essentially the vector potential of a circular conductor 
[9] and j,(x,, y,) is the density of the toroidal plasma current. 

To avoid the singularity of C(x, y; xP, y,) occurring for (x, y) = (xP, y,), the 
curve for the test points is shifted away from the plasma edge by a small distance; 
consequently the left-hand side of Eq. (4.1) must be replaced by $(x, y) > 0. 

By integrating the current distribution in the sectors fi defined by the coil 
position (Fig. 1 ), approximations of the coil currents can be obtained if the coils are 
located in the vicinity of the fence. These currents are used for starting the iteration 
of the semifree boundary value problem (Section 5). 

Employing Gauss integration in Eq. (4.1) with a node number N, z 75 a linear 
system of equations is obtained which is solved by a standard procedure for matrix 
inversion. To obtain a stable solution the node density must be rather high. 

By introducing, e.g., normalized Legendre polynomials as an orthonormal basis 
equation (4.1) can be rewritten analogously to the procedure used in Section 7 as 
a system of linear equations. The rank of the system matrix is truncated at a 
number N,, which emanates from the accuracy requirements. 

As jr is used to obtain an estimate of the coil currents, N, = 10 is in general 
sufficient. Thus the rank of the matrix needed to solve (4.1) in configuration space 
is strongly reduced. 

We note that the volume integral in Eq. (4.1) can be replaced by a surface 
integral over a current density j,, which is proportional to the poloidal field at the 
plasma boundary [9] (“virtual casing”). It follows from Eq. (4.1) that jr becomes 
equal to j,, if the plasma boundary and the coil fence almost coincide. This can be 
used as a check. 

5. SEMIFREE BOUNDARY VALUE PROBLEM 

Instead of adjusting the shaping parameters of Eq. (3.6))(3.8) in this section, the 
coil currents are computed iteratively under the condition that the plasma bound- 
ary reaches certain prescribed positions within prescribed error limits. By repeating 
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this procedure at each equilibrium call the time evolution of the coil currents 
shaping and centering the plasma is obtained. This does not include the currents in 
the feedback system which are to be controlled on the millisecond time scale to 
cope, e.g., with the fast BP changes due to the tearing mode activity and with the 
vertical position instability. 

In the transport part of the code (Section 8) it is attempted to account only 
for the time-averaged effects of the instabilities by employing phenomenological 
transport coefficients. Therefore the coil currents obtained here are time-averaged 
values as well, corresponding to the mean /I,, values. 

By assuming topbottom symmetry the vertical instability is excluded from 
consideration here. Three coil configurations are envisaged: 

1. The “open” configuration; mainly two coils as indicated in Fig. 3 are 
employed to confine an almost circular plasma. 

2. The “closed” configuration (Fig. 1) which is related to the confining coil 
fence of Section 4. 

3. The “mixed” configurations which may engender noncircular plasmas as 
the closed configurations and resort to more than one coil group for plasma 
shaping. 

If the equilibrium is to be calculated from given coil currents, as in the free bound- 
ary value problem (Section 6), the open, the closed, and the mixed configurations 
can be treated in the same way. In the semifree boundary value problem, however, 
the treatment of the open and mixed conligurations differs from that of the closed 
configurations because the plasma volume is to be defined by a special procedure 
for solving the ODE. 

5.1. Open Configurations 

The starting point is that a circular plasma can be confined by a homogeneous 
vertical field. This field may be generated approximately by a combination of two 

t’ 
premognetizing,ccil~, s, 

FIG. 3. Open configuration (TEXTOR) with iron core yokes and poloidal lield coils. The 
parametrization of the window’s inner boundary resorts to the lengths wFe,, I+~,,. aFe,. b,, (i= 1, . . . . 4) 
and ensures that the normal vector of this boundary changes continuously. 
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coils at radius R,. as shown in Fig. 3. This figure depicts the iron core and the yokes; 
the parametrization of the inner boundary of the iron domain is given as well. Here 
we concentrate on the action of the poloidal field coils. The influence of the iron 
will be discussed in Section 7. 

As in the case of the closed configurations (Section 5.2) the coil currents are 
predicted by means of the fixed boundary version of the code for a circular plasma 
(E = d = e = 1). After computing the pressure and the q profile from the initial condi- 
tions for the transport part of the code (Section 8) the confining vertical field H,. 
is computed from the $-function of the coil fence. The predictor value of J, 
emanates from the condition that the vertical component of the coils’ field at the 
plasma center equals H,. From the positions of the outer limiter’s edge (x,,, 0) and 
the plasma edge (xp,, 0) the corrections of the coil currents 

(51.1) 

are computed (Fig. 2b). x,. is the abscissa of the coils’ center. From the analogous 
positions of the inner plasma edge (xp,, 0) and the inner limiter edge (x,,, 0), the 
correction of the plasma volume A V, = 4x2R,a(x,, - xp,), and by linear interpola- 
tion (AV, < 0) or extrapolation (AVp > 0), the corresponding correction of the flux 
function at the boundary 

A+ = PL{ t-w, VI, V,,. + A VP> (51.2) 

can be computed. V denotes the nodes V, for the ODE-integration and w the 
tjj-values (j = 1, . . . . N,) computed by the preceding iteration step, and P, the linear 
inter- (or extra-) polation. By means of a new equidistant grid between 0 and 
V,,,> + Au,, all one-dimensional quantities needed for the integration of the ODE 
are newly interpolated from the old ones. The iteration is then continued with the 
integration of the ODE. 

Although the boundary has to meet prescribed positions only at two points, the 
calculations show (Section 10) that it is almost circular, even if the iron core is 
taken into account. During the time evolution of the discharge, the boundary is free 
except at the prescribed positions. Convergence is achieved if the condition (2.12) 
and the condition (3.10) for i = 1 and i = 5 are fulfilled. The OH-coils (Fig. 3) 
mainly influence the magnetization of the iron core (Section 7), thereby providing 
the flux swing necessary to drive the plasma current. 

5.2. Closed Configurations 

In the case of closed configurations the coils surround the plasma as shown in 
Fig. 1 for the poloidal field coils and the primary solenoid of JET. The coil currents 
are predicted and corrected during the ODE-PDE iteration until convergence con- 
cerning the plasma current and the plasma shape is achieved. For simple technical 
reasons a realization of the coil fence which is needed to match an arbitrarily 



TOKAMAK PLASMAS 113 

designed plasma boundary exactly is not possible. Therefore deviations between the 
plasma shape designed, e.g., according to (3.1) or (3.4) and the shape computed by 
the subsequent procedure will occur if realistic coil data are employed. 

The coils belong in general to coil groups which are assumed here to be connec- 
ted in series. In the case of a D-shaped plasma, four independent groups g,-g, 
(containing at least one coil) indicated in Fig. 1 are envisaged to adjust the minor 
axis a, the elongation, and the D-shapeness and to center the plasma radially. If 
these coil groups cannot be operated independently, as in the case of JET, at least 
two of the shaping parameters will be coupled because the ratio of the currents in 
the coils operated in series stays constant. 

It is assumed here that the primary solenoid can be treated as a poloidal field coil 
group, i.e., the current in the solenoid is determined by equilibrium considerations. 
The meaning of this assumption for, e.g., JET discharges is discussed in Section 5.3. 

In case of the open configurations only one coil group was used to position the 
outer plasma edge; here each coil group is employed to influence the “opposite” 
part of the plasma contour. This presupposes that the coils are located in the 
vicinity of the plasma boundary, i.e., between the vacuum vessel and the toroidal 
field coils. 

The “stiff configurations as in case of INTOR [27] are excluded from the 
considerations given below because the distance between the coils and the plasma 
boundary is large. 

By intersecting the straight lines EBj j = 1, . . . . N, (Fig. 1) with the computed and 
the designed plasma periphery, which might be described by Eq. (3.1) or (3.4), the 
positions are obtained where during the PDE-ODE iterations both contours are to 
be compared. N, is the number of the coil groups. 

The analogous positions at the coil fence (Fig. 1) are used to obtain the first 
approximation of the coil currents for the predictor step. The part of the coil fence 
alloted to each coil group is indicated in Fig. 1 (‘fi-f4”). As the coil fence is located 
in the vicinity of the plasma boundary and the coils are more remote from the 
plasma periphery, the currents 

are resealed according to 

CW,? YT,, &,’ L,) 
‘i = C(X,, Yq, A-,,, Yc,) If? 

(5.2.2) 

Here as in the following, the index j= 1, 2, . . . . N, stands for the coil groups. Z, 
is the arc length of the coil fence at the end of each sector fi, (x,, y,) are the 
coordinates of the coil positions, (xT,, yTi) are the coordinate of the test points T, 
indicated in Fig. 1, and (x~,, ys,) are the coordinates of the points Bj. 

From the differences 

A*, = +cJf,,7 Y,,) - w-L,* Y,), j=l 8, 3 . . . . (5.2.3) 
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which are computed as in case of the fixed boundary value problem, the analogous 
deviations At,bi, defined by means of the points Bj, are calculated by an interpola- 
tion P,, 

% = U-{Aw, a,}, qj}, j= 1, . . . . N,; (5.2.4) 

Atp denotes the array (5.2.3) and ap the set of the angles belonging to the points 
Aj (Fig. 1); c(,, is the angle of the coil group j. Analogously to Eq. (4.1.1) the 
corrections of the coil group currents read 

AJ,, = 
Min(AJ:,j, AJL); AJ:, > 0 
Max(AJ:,, - AJ,); AJ:., < 0 

(5.2.5) 

with 

AJij = Fcj A,,lc(~c:,, Xc,; XB,~ YB,), j = 1, . . . . N,. (5.2.6) 

In contrast to the corrections (3.9) in case of the fixed boundary, the change of 
each coil current influences the total plasma boundary in principle so that the 
corrections are not independent. Essential for convergence is the proper choice of 
the factor Fcj and of the upper and lower limits = f AJ, for the corrections AJ,,. 

The factors Fc, account for the fact that the part of the plasma contour shaped 
mainly by coil group j might overlap with that part shaped by the group j+ 1. 
Examples are the coils g, and g, in Fig. 1. For the D-shaped plasma of Fig. 1, 
Fc, = 2, F,., = 0.3, E;., = 0.3, F,, = 3, were chosen. For stiff configurations the over- 
lapping is so strong that the procedure breaks down. The iteration is stopped if 
(2.12) with E, = 1% and the conditions (3.10) with s2 = 2% are fulfilled. Compared 
to the fixed boundary values problem the accuracy prescription is somewhat 
relaxed. 

In this case a maximum number of iterations N, = 50 turns out to be sufficient. 
If convergence cannot be achieved for a prescribed N,,, the equilibrium step is 
repeated as described in Section 2.2. 

In Fig. 2b the computational steps for solving the semifree boundary value 
problem are summarized. 

5.3. Mixed Configurations 

Configurations for which the plasma volume is to be controlled (as in Sec- 
tion 5.1) and which resort to more than one coil group (as in Section 5.2) here are 
called “mixed” configurations. Typical examples are coil setups with a long primary 
solenoid (e.g., JET) which can be treated as “mixed” or-in a limiting case-as 
“closed.” The solenoid’s current is determined by the flux swing requirements 
necessary to induce and to maintain the plasma current, and not by equilibrium 
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considerations. If this current is small, as in the initial stages of the discharge, the 
configuration is “mixed” and the plasma volume is to be controlled (in solving the 
semifree boundary value problem); the outer plasma boundary is to be adjusted by 
means of the other coil groups using the same methods as in Section 5.2. Specifi- 
cally, an elongation of the JET plasma is achieved by the current in coil g, which 
must be positive (i.e., parallel to the plasma current). In fact, the number of turns 
in this coil available for plasma shaping is reported to be negative (n3 = -20) [7]. 
The closed conliguration can be understood as the limit of the “mixed” configura- 
tion, in which the “private flux” of the primary solenoid and the flux generated by 
coil 1 are sufficient to elongate the plasma (Fig. 9, which is discussed in Section 10 
in more detail, gives an example). In this case the current in coil g, is small and is 
only needed to meet the prescribed plasma boundary exactly. The current in the 
primary solenoid is in this limit determined by the considerations of Section 5.2. 
Thus the equilibrium belongs to that timepoint in the evolution of the discharge at 
which the just-computed current agrees with that resulting from the flux swing 
requirements. 

6. FREE BOUNDARY VALUE PROBLEM RESORTING TO THE DRIVING VOLTAGES 

The main difference between the semifree and the free boundary value problem 
is that in the latter case the circuit equations are employed to predict and correct 
the coil currents. These equations are 

Yi=R,J~,+L,~+I,i~+~~' P,%+l,i+ +ljFe, 1 (6.1) 
j= I 
j#i 

i = 1, 2, . ..) N, + 1. Ri are the resistances of the coils, Vi the voltages, Lj the self 
inductances, and Pi,j the mutual inductances. Equation (6.1) also comprises the 
plasma (j = N, + 1). The system (6.1) is to be added to the plasma evolution 
equations (8.1 j(8.3) and (8.20) in Section 8. 

The changes of the flux function due to the iron core Y’,, can be accounted for 
during the corrector steps (Figs. 4). The time step is in general limited by the time 
scale of the driving voltages, which change rapidly in the case of fast feedback. 

We note that the application of Eq. (6.1) provides the possibility of accounting 
for passive conductors (Vi = 0), as e.g., a vacuum vessel without a break. If the 
solution for the semifree boundary value problem furnishes the coil currents lC,, the 
necessary voltages can be computed from Eq. (6.1). This applies also for the 
primary solenoid, the current of which is mainly determined by the flux swing 
requirements. However, the currents in the passive conductors cannot be accounted 
for by solving the semifree boundary value problem. 
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predicting correcting 

+ 

next timestep 
n =n+, 

[including the circuit equ.] 

IincludIng the circuit equ.] 
using time dependent grid 
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next 
corrector 
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step 

I 

FIG. 4. Iterative method for computing the evolution of a plasma with fixed, semifree, and free 
boundary. In a first step the method predicts an equilibrium resorting to transport code calculations, 
which employ a fixed flux surface geometry. During correction in a second step, a time dependent flux 
surface geometry is used for the transport steps. The noniterative version resorts to the predictor steps 
only, thus yielding a stepwise evolution of the equilibrium only. The timesteps between the equilibrium 
calls must be small to ensure that the changes due to the calls of the equilibrium solver are small. Within 
the square brackets the additional computational steps in case of the free bounary value problem are 
indicated. The circuit equations need the inductivity matrix P, (L, = P,,) and the driving voltages as 
input and are to be solved in addition to the plasma evolution equation. 

7. MAGNETIZATION OF THE IRON CORE AND THE YOKES 

Especially in open configurations an iron core and yokes are employed to 
increase and to guide the magnetic flux generated by the OH-coils. Due to the high 
permeability p, the iron core and the yokes distort the vacuum magnetic field con- 
figuration considerably. The main effect is that the magnetic field lines are almost 
perpendicular to the surface of the iron if the relative permeability pI is sufficiently 
large. Replacing the yokes and the core by a two-dimensional configuration 
(“window,” Fig. 3) in which the yokes are smeared out toroidally, so that the 
plasma is surrounded by an iron torus, the magnetic field configuration was 
computed already by applying a Poisson solver [28]. As the yokes cover a small 
fraction of the outer circumference of this torus a reduced averaged permeability is 
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to be introduced. Otherwise the impact of the yokes on the magnetic field 
configuration might be strongly overestimated. 

In the case of simple two-dimensional configurations with p = cc a rough 
estimate of the iron’s action can be obtained by introducing image currents in the 
domain of the iron modifying the vacuum field so that field lines are perpendicular 
to the iron surface [29]. 

Instead of using discrete currents, in this paper the iron core is replaced by an 
equivalent surface current density changing the magnetic field in the same way as 
the core, if constant permeability can be assumed approximately in a first step. In 
the next step a permeability depending on the magnetic field can be assumed as 
well. The purpose of the yokes is to prevent the demagnetizing field generated by 
“free magnetic charges” [30] which occur at the ends of the iron core, if this core 
is used without yokes, and thus to guide the magnetic flux from one end of the core 
to the other without releasing it to the volume inside the window (“stray field”). To 
account for this, two options are foreseen: 

1. The iron core, replaced by a cylindrical current density, is assumed to be 
longer than in reality by around a factor 2 so that the flux emanating from its ends 
hardly affects the magnetic field inside the volume defined by the window. The 
remaining stray field decreases the field of the coils so that the coil currents might 
be overestimated. 

2. To prevent the stray field, the iron core is complemented by (smeared out) 
yokes which are described by the lengths wFe, and wFev (Fig. 3). wFeF is the length 
of the iron core. To avoid discontinuities in the field parallel to the iron surface, 
transitions between the limbs of the yokes and between the iron core and the upper 
and lower limbs were assumed. These transitions are described by elliptical arcs 
with the half-axes a,,, and b,, (j= 1, . . . . 4) (Fig. 3). 

A realistic estimate of the image current density standing for the magnetization 
of the yokes can be achieved by introducing a reduced average (effective) 
permeability for the yokes so that the magnetic resistance [30] of the smeared out 
yokes is the same as that of the real yokes and the corresponding air region. The 
effective permeability is 

perr = (N,,prb, + 2xR - N,,b,)/2nR. 

NV is the number of the yokes, 6, their dimension perpendicular to the plane of the 
cross section in Fig. 3, and R the radial coordinate of Fig. I. The 2nd treatment 
describes the saturation of the yokes, which might be important in case of JET. 

Two cases, pr = co and pL, < co, are envisaged here. The equations for the equiv- 
alent surface current densities are given for the iron core only; a generalization to 
the total window is straightforward. 

The field lines are perpendicular to the surface of the iron core, i.e., the tangential 
component of the magnetic induction, B,g vanishes. This condition can be fulfilled 
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by assuming an axisymmetric current density j, in the cylindrical surface. From 
B,, = 0 follows a Fredholm equation of the 1st kind for j, 

J jFp(z’) 4 D(R,, z; R;, z’) dz’ = - B,,(R,, z) - B,(R,, z). (7.1) 

The tangential components of the magnetic inductions due to the plasma current 
and the coil currents, B,, and B,, respectively, are 

B,d%, z)= J j,(R,, zp) 2 D(R,, z; R,, zp) dR, dz, (7.2) 

and 

B,(R,, Z) = C J,, : D(R,, z; Rc.3 zcj). (7.3) 

The coordinates (RF, Z) and (Rb, Z’) denote the test and the source points. Rb is 
the radius of the core (Fig. 3). R, is slightly larger than R>; the difference R, -R> 
is given at the end of the section. The source points of the plasma and the coils are 
(R,, ZJ and (R,.,, Zc7L respectively. The quantity 

D(R, z; R’, z’) = ___ 
R’* - R* - (z -z’)’ 

K(k)+(R-R’)2+(Z-Zf)2E(k) ’ 1 (7.4) 

is essentialy the vertical (z)-component of the magnetic field generated at (R, z) by 
a circular conductor with radius R’ and height z’. 

2. p, < co 

In this case the discontinuity relation for the tangential component of the 
magnetic induction is employed, written in terms of the continuous tangential 
component of the magnetic field H,, 

B,lg - Bz,, = PO(L - 1 )Ht,. (7.5) 

The index 1 denotes the interior and the index 2 the exterior of the iron core. Again 
a surface current density is introduced accounting for the relation (7.5). Applying 
Ampere’s law on the infinitesimal small volume indicated in Fig. 3, one gets the 
relation 

BLtp - B2,, = MFe. (7.6) 

It follows, e.g., from Biot-Savart’s law, that at the surface of the core j,+(z) 
generates a tangential component only so that the normal component of the 
induction B, is not affected. Hence the continuity relation 
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holds as well. From (7.6) and (7.5) we get a Fredholm equation of the 2nd kind 

~o&e(&, z) = CLO(P~ - 1) j j,,(&, z’) i D(R,, z; R;, z’) dz’ 

+ (PU, - 1 )(B,,(R,, z) + &(R,> ~‘1). (7.7) 

For pr = 1 (saturated iron) we have jr+(z) = 0. If pr B 1, Eq. (7.1) is obtained. 
Gauss-integration with up to N,, = 100 nodes can be employed to convert the 

integral equations (7.1) and (7.7) into matrix equations. 
To ensure that the field generated by the discretized current density jre is 

sufficiently smooth at the testpoints (RF, Z), R, = RF* + cFe is used, where .sFe is of 
the order of the distance dFe = W,JN,, z 5 cm between the current-carrying 
filaments standing for jFe. We note that .sFe is small compared to the major radius. 

The solution of Eq. (7.7) in configuration space requires an inversion of high 
rank matrices. This can be avoided in general if the current density j,, is expanded 
by using, e.g., (normalized) Legendre polynomials as an orthonormal basis. The 
thus obtained Legendre representation of Eq. (7.7) is 

F Mi,jjFc, = CL0 F D;, ij,,, + BP,, + B,. 
j=O 7T j=O 

(7.8) 

The matrices Di.j, M,,, and the vectors B,,,, B,, jFe, are given by 

St’ .-a 
Di,j = I s & .%I 

D(S, S’) P;(S) P,(S) dS dS’ 

B,,, = s ‘* B,,(S) P,(S) dS 
S” 

4 = s ‘* B,(S) P,(S) dS 
S” 

he, = i I’” h,(S) P,(S) dS 

Mi.j = Lb js, 
“Pi(S) pj(s) ds 

c1 B _ 1 ’ e 

S = (RF, Z) and S’ = (R;, Z’) are the test and the source points, respectively. S, 
and Sb denote the starting and end points of the envisaged interval defined by the 
core. P,(S) is the (slightly modified) Legendre polynomial normalized in (S,, S,). 
If the yokes are accounted for, the test points ST is defined by the arc length 
between the origin 0 and S, (Fig. 3). The calculations show that the results for 
N, > 30 are almost insensitive with respect to N,; therefore N, = 30 is used in 
Section 10. 

As saturation effects are important, during the PDE-ODE iteration the field 
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dependence of p, can be introduced by a backaveraging procedure. We note 
however, that the solution of (7.7) only describes in the case of constant pr, the field 
penetration into the iron, correctly. Here we concentrate on the field configuration 
outside the iron. There the field computed by means of jFe should be a good 
approximation as the impact of the discontinuity relation (7.5) is in general 
dominating. This is confirmed by comparison with the TEXTOR results 
(Section 10). 

We note that the matrix M,, becomes diagonal M, j = c~~,~/(P,~ - 1 )), if a con- 
stant perr is assumed. The matrix Di.j depends on the geometry of the transformer 
iron only and needs to be computed one time only. i14~,~, however, depends in 
general via pu,(lBI) on the fields generated by the coils and the plasma current 
and on the field evoked by j re, i.e., the magnetization. By storing the geometry- 
dependent parts in the expressions for these fields which are analogous to (7.2) the 
computation of IBI can be vectorized. The calculation of B,,,, B,, and MI,j can be 
vectorized as well, since Pi(sk) need to be computed initially only and the field 
components B,,(s,) and Bc(sk) one time at each iteration step; sk are Gaussian 
nodes (k = 1, . . . . 100). 

8. TIME EVOLUTION OF THE PARTICLE DENSITIES, THE TEMPERATURES, 
AND THE MAGNETIC FIELDS 

The time evolution of the electron and ion temperatures depends essentially on 
the power and distribution of the energy sources, as Ohmic, neutral injection, or 
high frequency heating, and of the energy losses effected by conduction, convection, 
line radiation, bremsstrahlung, cyclotron radiation, charge exchange, ionization, 
and recombination. The particle source and loss mechanisms which determine the 
particle inventory, are the diffusion perpendicular to the magnetic field, the inward 
flow, deposition by neutral injection heating, neutralization at the limiter or 
divertor plate, and the recycling processes. 

Accounting for the processes mentioned above and for an evolving flux surface 
geometry, one arrives at the following transport equations [ 14-193 for the particle 
densities nj and the electron and ion temperatures T,, ri of a multispecies plasma 

&I- 18 
at - -PG CP(lvPlz) r,] +s,sf, +Sj 

+ 'e.x, + shj + s,j + S;O(p - p,), 

j= 1, . . . . 6; 

+ PI?, + P,< + p,, + P” + P,, + P,< 

+ pz*, + Prad + pi, w - pp); 

(8.1) 

(8.2) 
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+ pm, +p,,-pe, -pfl +p,, 
+ p,., + p, + PL,@(P - P,). (8.3) 

These equations are solved by means of the plasma module, the flow chart of which 
is depicted in Fig. 5, which shows the interaction with the other modules as well. 
The flux density r, of ion species j, the equilibration term Peq, the effective mass 
WZ,,,-, the analogous effective charge number Zelfr the flow work P,, the total ion 
convection flux I-,, and the eiectron convection flux r, are 

P,, = 2 F (T, - T,) 

1 
-= 

I,“= 1 ij (Z,'>/mj 

m err C,"= I nj 

(8.5) 

(8.6) 

FIG. 5. Flow chart of the 1 f D-code TORUS II; within the broken line the chart of the lD-code 
TORUS I is given. The transport equations account for the source terms provided by the neutral gas, 
the impurity, the beam deposition, the slowing down, and the scrape-off modules. The equilibrium 
module provides ZD-flux surface geometry, the metric quantities, the outer magnetic lields, and some 
stability information. 
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P” =;g (n,T;) 
c 

6 

l-, = 1 r, 
,= I 

rc= 2 CT,> ri; ,=I 

(8.7) 

(8.8) 

(8.9) 

j= 1 stands for the protons, 
j= 2 for the deuterons, 
j= 3 for the tritons, 
j = 4 for the CI particles, 
j= 5 for a light impurity species (carbon or oxygen), 
j= 6 for a heavy impurity species (iron or molybdenum), 
( IVpl’) is the metric quantity accounting for the shape of the flux surface [3], 
k is Boltzmann’s constant, 
0, the diffusion coefficient of the ion species j, 
xc, the electron heat diffusivity, 
xi the ion heat diffusivity, 
mj the mass of the ion species, 
men the effective mass, 
(Z), the average charge number of the species j, and 
(Z’), the average squared charge number. For the hydrogen species the 

convention (Z,) = (Z,) = (Z,) = (Z:) = (Z:) = (Z:) = 1 is used; 

6 

n,= C <z,>nj 
,=I 

and 

6 

n,= 1 nj 
i= I 

are the total electron and ion density, respectively. The impurity quantities, nj and 
r,, are sums over all ionization stages; the average ion model is adopted 
throughout [39] and sputtering is assumed as impurity source [40]. 

The sink terms S/L, Pi, Pi are switched on in pP < p < pW by the Heaviside step 
function Q-p,,) if the devices defining the plasma aperture are accounted for 
explicitly. In this paper only limiters are envisaged [47-503. pW defines, together 
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with pP, the extension of the scrape-off layer. The boundary conditions at p = pw 
are pedestal conditions; they are 

T,(p,,)= Ti(p,)=5 eV 

nj(Pw)="*05 xnj(P=o)It=,~ 

j = 1, . . . . 6. 

The scrape-off layer is not included in the equilibrium calculations. The metric 
quantities computed at p = p,, are used in pP < p < pw as well. 

For many questions concerning the core plasma radial resolution in the 
scrape-off layer is not important and the limiters are roughly accounted for by the 
boundary conditions at p = pP only. These are 

c(~,) = TAP,) = 25 eV 

n(p,)=O.l nj(p=O)),=rJ 

j= 1, . . . . 6. 

The energy source and sink term PO,, Pxy,,, Pb,,, PRFe,,, Prad, P,.,, PC<,,; Peq, P, 
stand for Ohmic, a-particle, beam- and RF-heating [4244], radiation, charge 
exchange, temperature control [45-46], equilibriation, and for the flow-work of the 
ions [ 1 ] transferred to the electrons, respectively. Specifically, the ohmic heating 
term [ 131 is given by 

PO, = (jE), =q,,$i$(p ($$) F) 

xL.c((q)p$), (8.10) 

(8.10) accounts for the fact that neither the current density j nor the electric field 
E are surface quantities. The quantities f, A, R, BP and the average value 
( [Vpl */R2 ) are defined in Section 2. The neoclassical expression for the parallel 
resistivity v],, in Ref. [l] is employed; however, the radial coordinate there is 
replaced here by the effective radius p and the effective charge number (8.7) is 
introduced. We note that the (generalized) radiation losses (Prad) comprise the 
ionization (Pi,,), line radiation (Pli,,), and bremsstrahlung losses (Pbr,) evoked by 
the impurity species [41] and the hydrogen ionization and bremsstrahlung losses, 
PioH and PbrH, i.e., Prad is 

The hydrogen line radiation losses are neglected. The particle source terms Sj, SCX,, 
S,, and S, account for the ionization of the neutral particles [2O-231, for the 
(nondiagonal) charge exchange reactions, for neutral injection, and for fusion. The 
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source terms S,, PA,, and P,, account for the adiabatic changes of the plasma 
parameters due to the evolution of the flux surface geometry; they are given by 

(8.11) 

(8.12) 

P,, = -r&T, k $. 

The dot denotes the derivative with respect to 1,9; y = 3 is the adiabatic constant. 
In Fig. 4 the iteration scheme is shown for the computation of the equilibrium 

evolution. The calculation is started (t = t, = 0) with a consistent set of plasma and 
magnetic field parameters. 

During the predictor step a fixed flux surface geometry is used in order to 
estimate the equilibrium quantities at t = t, . In correcting, a variable geometry can 
be employed by interpolating between the quantities at t = t, and the predicted (or 
corrected for 12 1) quantities at t = t,. In Fig. 4 the index 0 is replaced by n and 
the index 1 by n + 1 because the same considerations are valid for an arbitrary 
timestep. The iteration is stopped if the maximum of 

and 

becomes smaller than a prescribed accuracy parameter s3. A simplified (non- 
iterative) computational scheme resorts essentially to the predictor step of Fig. 4. In 
this case the source terms (8.1 l)-(8.13) are not used; the adiabatic transformations 

(8.15) 

t$(Y)=,vni(Y), j= 1, 2, . . . . 6, 
V 

are employed instead after each equilibrium step. 
The applicability of the simplified scheme must in principle be checked by 
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the iterative scheme. However, if the flux surface geometry changes slowly it 
can be expected that the simplified schemes describes the discharge in a good 
approximation. 

A simple empirical model is chosen [3] for the transport coefficients D and x,; 
xi is obtained from neoclassical theory [ 11: 

D/x, = 0.25 (8.17) 

(8.18) 

xj = f(vF) q2p:vii. (8.19) 

The function f(v*), depending on the collisionality VT, is given in [ 11. q is the 
safety factor, pi the ion Larmor radius and vii the ion-ion collision frequency. 
Instead of the’ neoclassical inward flow term (“Ware pinch”) [l, 31, the 
phenomenological inward flow term advanced by Engelhardt et al. [31] is used in 
Eq. (8.4). The neoclassical fluxes rnj are neglected in the case of the hydrogen 
species (j = 1,2,3) but taken into account in the case of the impurity species (j = 4, 
5, 6) [39]. This rough procedure is probably justified as in practice nonclassical 
processes dominate the transport. The evolution equations (8.1)-( 8.3) are 
completed by equations for either the poloidal or the toroidal flux function given 
in [6] and written here in terms of p and the effective poloidal and toroidal 
magnetic inductions BP and 8, both defined in Section 2, 

The source term Sq and S,, read 

and 

(8.20) 

(8.21) 

(8.22) 

V-23) 

The equivalent equations (8.20) and (8.21) describe the magnetic field diffusion. 
A similar procedure as in case of Eq. (8.1)-(8.3) accounts for the movement of the 
flux surfaces. 

The time-centered source terms Sg or SB, computed by an interpolation can 
be obtained by the iterative version only. In the case of the noniterative scheme, 

S81/80/1-9 
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only an extrapolation based on the last two equilibrium calls can be used. This 
presupposes that the time-dependence of the source terms is weak. 

Equation (8.20) is to be chosen if the changes of the toroidal field are small and 
the changes of the poloidal field are dominant. Examples are the current rise and 
the flat top phase during normal Tokamak operation because changes of the 
currents in the toroidal field coils are in general difficult to achieve by engineering 
reasons already. In the case of the TUMAN compression experiment [32], 
Eq. (8.21) describes the penetration of the toroidal field after the compression 
phase. Here only normal Tokamak operation is investigated and therefore 
Eq. (8.20) is used throughout. Finally, we note that among the possible evolution 
equations [6], (8.20) and (8.21) were chosen to allow the transition to the familiar 
poloidal and toroidal field diffusion equations [33] in a straightforward way. 

Between the timepoints t, and t,, , (Fig. 4), several transport step At, are 
inserted during which the coupled system (8.1 k(8.3) and (8.20) (or 8.21) are 
solved iteratively at certain timepoints t, (t, < t, < t, + , ). A predictor-corrector 
method is used analogously to that described in Ref. [23] for a system of coupled 
diffusion equations. The Crank-Nicholson differencing, the accuracy prescription 
for the correcting and the timestep control described there are used here as well. 

The equidistant grids (pi) and (pi+ 1,2) are resealed before each timestep At, 
according to the evolution of the plasma volume VP, thus accounting for one part 
of the movement of the flux surfaces. This movement occurs even in the case of the 
fixed boundary value problem because of the finite accuracy in the computation of 
the plasma boundary. The (possibly less important) movement of the flux surfaces 
relative to the grid (p,) is accounted for by employing an auxiliary grid {p(lj/,)} 
synchronized with the flux surfaces exactly and transforming the plasma parameters 
from the {p(tij)} grid to the {p,} grid after each timestep. 

Also the equilibrium quantities as ( lVp[ “) are calculated by an interpolation 
before each timestep At, presupposing that the variation of these quantities can be 
approximated linearly between two equilibrium calls. 

A flowchart of the one-dimensional transport code, together with the codes for 
the neutral gas background, the impurities, additional heating, and the scrape-off 
layer, is shown within the broken line of Fig. 5 (“TORUS I”); outside the broken 
line the two-dimensional equilibrium code and its submodules are displayed which 
allow in conjunction with TORUS I the “1 f D” description (“TORUS I”). 

We note that the computation of the tridiagonal matrices which are to be 
inverted in solving the system (8.1 k(8.3) and (8.20) is vectorized essentially by 
storing some of the source terms and their derivatives with respect to the plasma 
parameters at each predictor and the coefficients at each corrector-predictor step. 
The majority of the source terms, e.g., those evoked by additional heating and the 
neutral gas are computed at selected time points and assumed to be constant in the 
time intervals between the calls. 

During the evolution of the discharge the Mercier criterion and Glasser criterion 
for the ideal and the resistive interchange MHD stability, respectively, may be 
checked [3,38]. They require D, < 0 and D, < 0, where the quantities D, and D, 
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account, e.g., for the destabilizing effect of the pressure gradient are given in [3, 
511. However, the just mentioned conditions do not exclude the onset of MHD 
activity completely which might distort or destroy the flux surface geometry by 
ideal or resistive modes. These modes possibly evoke another transport behaviour 
than described by (8.18) or even terminate the discharge [52-581. Therefore /I-, 
density, and safety factor limits are checked also [59-621. 

9. PARTICLE FLUX AND POWER BALANCES 

Integrating equations (8.1), (8.2), and (8.3) over the plasma volume in 0 < p < pP 
yields the rate of change of the particle and energy inventory 

r;: = SDj + 3, + s, + s,.,, + s,,. + szj (9.1) 

& = Pl-& + B,,< + P,< + P,, + P” + P,, + P, 

+ ‘be + pz, + ‘RF? + Piofi + Prad, + Pbr~ (9.2) 

ii = PC,, + SC,, + P,.j, - P,, - Pfl + P,, + P, + P, 

+P,,+P,. (9.3) 
- - 
SD,, pco,.,, and Pcve I stand for the diffusive particle losses, the conductive and the 
convective energy losses. Prad, comprises the impurity radiation losses, i.e., Prad, = 
ph, + Bbr, + pio,. The remaining quantities, as S,, S,, etc. (always marked by 
bars), are obtained from the corresponding quantities in Eq. (9.1 k(9.3) by a 
volume integration. Time integration of Eq. (9.1 k(9.3) yields 

Nj=Nj(f=O)+pj(*)m (9.4) 

and analogous equations for E, and E,. The LHS of Eq. (9.1) and (9.4) can be com- 
puted from thg spatial and temporal evolution of the particle densities n,(r) as well, 
resulting in N, and NJ. Analogous considerations hold for the energy contents E, 
and Ei, yielding E,, E,, Ei, and i?,. The relative deviations 

lrir, -61 I&-J!?) Ii, -61 lNj(f)-N,(t)1 
Max(s) ’ Max( Pi) ' Max(P,) ’ Ni(t) ’ 

and IE,(f) - ~%(t)l 
E,(t) 

stay below S,, a,, . . . . 6,, respectively, in all calculations mentioned in Section 10; Sj 
(j= 1, 2, *.., 6) are given by ~5~ = 10p3, 8* = 6, = 5. 10e3, 6, = 10p2, 6, =6, = 
5 . 10e2. Max(S), Max(P,), and Max(P,) denote the maxima of the absolute values 
of the terms on the RHS of Eq. (9.1)-(9.3). 
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10. RESULTS 

In this section a medium-size device, TEXTOR with circular plasma, a major 
device, JET, with an elongated plasma, and a reactor-like Tokamak, INTOR, are 
envisaged. The first two devices allow a comparison with experimental data. 
However, it is mainly intended to demonstrate the numerical feasibility and 
consistency of the code rather than a detailed comparison with these data or a 
thorough transport analysis; the reason is that the simple empirical transport model 
cannot be expected to describe the particle and energy inventory with high 
accuracy. Therefore the results preferentially concern the magnetic field structure 
generated by the plasma, the coils, and the iron. In fact, the Grad-Shafranov 
equation provides a more reliable basis for the pressure balance than the transport 
equations do for, e.g., the electron energy balance. 

For the computations an IBM 3033 V/2 computer interacting with an MVS 
(multiple virtual storage) batch system and a CRAY X-MP computer interacting 
with a COS 1.12 (CRAY-operating) batch system were employed. 

In the case of the semifree boundary value problem, solved for TEXTOR (open 
configuration) and JET (closed configuration), the noniterative version of Fig. 4 
was used because the maximum possible timestep between the equilibrium calls was 
chosen to be small (30 ms for TEXTOR and 50 ms for JET) and the equilibrium 

FIG. 6. Flux function inside and outside the TEXTOR plasma with iron core and yokes which are 
accounted for by Eq. (7.8) employing a representation by trigonometric functions; peer is geometry and 
field dependent. 



TOKAMAK PLASMAS 129 

evolves slowly. Other reasons are the rather large CPU-times for the coil and the 
iron module. In the case of INTOR for which the fixed boundary value problem 
was solved the iterative and the noniterative versions were employed. A comparison 
revealed no significant changes, except for the fact that in the iterative version the 
time evolution of the particle and energy contents and of the corresponding fluxes 
becomes continuous because the geometry of the flux surfaces changes continuously 
as well; the accuracy parameter was s3 = 3 %. 

10.1. TEXTOR 

The main TEXTOR data are [28]: plasma radius pp = 50 cm, major radius R, = 
175 cm, plasma current Z, = 476 kA, vacuum value of the toroidal field (at R = R,), 
B,,, = 20 kG. The coil and the transformer iron data are indicated in Fig. 6. This 
figure displays mainly the flux function inside the window. 

The iron core and the yokes were accounted for by means of the representation 
(7.8) employing trigonometric functions as the orthonormal basis. A geometry and 
field-dependent permeability was assumed. 

Almost the same result as in Fig. 6 is obtained if Legendre polynomials or 
Chebyshev polynomials of the first kind are used. This confirms that the results are 
appoximately independent from the basis. Because of the toroidicity [33] and the 
attraction by the yokes the cross section in Fig. 6 is somewhat elongated. This 

JC2 =-144 kA 

I -I- -J,, z-91 kA 

J pr,,,,=-2MA 

FIG. 7. Mixed configuration with a primary solenoid and two shaping coils. The current in the 
primary solenoid Iprim is prescribed. I,, and ICI are adjusted to shape and position the plasma. 
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elongation disappears if the OH-coils of Fig. 3 are taken into account. The reasons 
are the reduced permeability in the vicinity of the coils and their shaping effect. The 
circular cross section is corroborated experimentally. To provide a better guidance 
for the OH-flux and thus to enhance the flux swing, the OH-coils in Fig. 7 are 
replaced by a long primary solenoid with prescribed current Iprim = 2 MA and two 
shaping coils top and bottom of the plasma are added to maintain the circular cross 
section. This setup is an example of a mixed configuration (Section 5.3). The 
current Z,., is smaller than the analogous current in Fig. 6. because the current in the 
shaping coils contribute to the vertical field as well. 

In Fig. 8 the time evolution of the coil current centering the plasma between two 
rail limiters at x = +pL is given: without iron core (a), with iron core and assuming 
p = co (b), with iron core and employing a field-dependent permeability (c). Curve 
(d) stands for the the experimental dependence. Only in case (c) is the maximum 
deviation from the experimental curve small (8%). This stresses the importance of 
the transformer iron for the force balance. The plasma parameters emanating from 
a programmed gas feed and ohmic heating may, during the flat top phase, be 
characterized by the maximum values nIm,, = 3.7 x 10”/cm3, T,,,, = 790 eV, 
Ti,,,,x = 740 eV, zemmax = 1.5 for the proton density, electron and ion temperatures, 
and the effective charnge number, respectively. 

10.2. JET 

The calculations are based on two data sets: the first concerns a scenario with 
powerful additional heating which will be available in future JET shots [35, 361. 
The second concerns shot 6296 with ohmic heating only [37]. 

10 
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05 1,.,,. 192 kA 
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mox 1500ms 

0 01 02 03 OL 05 06 07 08 09 10 

Fig. 8. Time evolution of the poloidal lield coil currents in TEXTOR without (a), with iron core and 
p= co (b), and with iron and p=r(lBl) (c); curve (d) shows the experimental evolution dependence 
(shot 5465). 
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In the first case the JET data are pP = 165 cm, R. = 297 cm, ellipticity E = 1.77, 
excentricity e = 1.66, D-shape d= 1.2, toroidal field B,, = 35 kG, plasma current 
J, = 4.80 MA. The data for additional heating, neutral injection (NI), and ion 
cyclotron resonance heating (ICRH) are: beam turn-on time t,, =O, beam turn-off 
time tB2 = 5 s, beam power PB = 17.25 MW, and beam energy E, = 160 keV. The 
injected species is deuterium and co-injection is assumed. A full-beam geometry is 
used. The main geometrical data of the beamline are [36]: Portwidth a, = 33 cm, 
portheight a,, = 77.6 cm horizontal focal length f,, = 1000 cm, vertical focal length 
f, = 1400 cm, horizontal divergence d, = 0.7”, vertical divergence d, = 0.7”, and the 
angle between the beam axis and the straight line connecting the pivot point with 
the torus center a3 = 16.34”. 

The ICRH power is P,, = 20 MW, the ICRH turn-on time t,, = 1 s, and the 
ICRH turn-off time t,, = 5 s. A density-weighted deposition profile was assumed. 
The geometry of the coils, the iron core, and the yokes [7] is displayed in Fig. 9. 
By the choice of are, = 1.40 m and b,, = 1.40 m (i= 1, . . . . 4) it is attempted to 
account for the fact that the iron core has a larger diameter at the top and bottom 
than in the equatorial plane [7]. 

The mean initial deuteron and triton densities are n, = nT. = 2.2 x 1013/cm3. The 
impurity species are a-particles, oxygen, and iron. The mean oxygen density is 1 % 
of the mean initial hydrogen density n, + nT and stays constant. 

It is assumed that at the end of the flat top phase the current in the primary 

J% 

$:O 

t 

JC, : - 0.98MA 

JCz= -0.41 MA 

JCx- -011 MA 

Jc,= -1.08MA 

+ Jc, 

FIG. 9. Flux function inside and outside the JET-plasma. The Legendre representation of Eq. (7.8) 
accounts for the transformer iron. The plasma parameters are those of the flat top phase. 
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solenoid approaches its maximum value, which is compatible with the prescribed 
plasma shape. Therefore JET is treated as closed configurations, i.e., as the limiting 
case of the mixed configurations discussed in Section 5.3. To show that by the 
methods of Section 5.2 the prescribed plasma boundary can be obtained almost 
exactly, the currents in the groups g,-g, were adjusted independently, therefore 
having two degrees of freedom more available than in reality. We note that in the 
early phase of the discharge the treatment as closed configuration is quite 
unrealistic. 

Figure 9 shows the flux function at t = 4.9 s (flat top phase) generated by the coil 
groups g, -g,, and the plasma current and the transformer iron (Legendre represen- 
tation; N, = 30). A comparison with a vacuum calculation shows that the influence 
of the outer limbs on J,., is small because of the geometric dependence of pr and 
that of the iron core on Jc, is small as well because of its saturation (11, x 2). The 
currents J,., 3 changes are stronger because of the mirror current density in the upper 
and lower hmbs. Their relative changes are 20 % and 65 %, respectively. The maxi- 
mum temperature during the flat top phase due to additional heating are Tern,, = 
8.7 keV and Timax = 10 keV. The total fusion power is P, =4.4 MW (12% of the 
total input power). The time evolution of the stability parameters D, and D, 
investigated for the flux surface II/ = 0.21//,i,, i.e., in the vicinity of the plasma 
boundary, agrees almost exactly with the results given in Ref. [38]. There the 
analogous fixed boundary value problem was envisaged. The impurity content may 
be characterized by ZenmaX = 3. 

FIG. 10. Flux function inside the INTOR plasma boundary. The analytical expression (3.4) was 
chosen to describe the boundary. 
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The plasma current, the effective radius, and the elongation belonging to shot 
6296 are given by Z, = 2.42 MA, pP = 1.42 m, E = 1.35, respectively. The excentricity 
is equal to unity and the D-shapeness is d= 1.2. The maximum temperatures are 
T emax = 3.1 keV and Timax = 2.1 keV; the maximum ion density is nilMX = 2 . 1013/cm3. 
Two coil groups, g, and g,, are used to reproduce the currents ZeX, = 0.54 MA and 
I,.,, = 0.68 MA (I,,, = I,,, = 0). The maximum deviation is 4 % only. 

However, because of the attraction by the yokes, the plasma elongation was to 
be limited artifically by introducing a lower limit C, = 10e4 Vs of the flux function 
at the upper and lower side of the box in Fig. 2 thus partly employing the boundary 
condition of the fixed boundary value problem. The procedure corresponds roughly 
to a confining current distribution on the top and bottom of the box. This might 
simulate the action if a vessel’s current distribution is possibly induced during 
earlier phases of the discharge. 

10.3. INTOR 

The INTOR design of Ref. [27] resorts to a poloidal divertor to achieve the par- 
ticle and energy exhaust. The divertor might be also needed to reach the eventually 
decisive H-mode. Until now, however, it is not quite clear if a divertor device is 
more advantageous than a (pump) limiter device using the total available volume 
in the main vacuum vessel for the plasma operation. Although a divertor multipole 
could be included in the modelling, here the limiter case is treated, thereby concen- 
trating on the fixed boundary value problem. The data of the INTOR-like device 
[27] read: pP = 151.8 cm, R. = 5.30 cm, ellipticity E = 1.6, excentricity e = 2.13, 
D-shape d= 1.1, toroidal field B,O = 55 kG, plasma current J, = 6.4 MA. The 
plasma boundary is described by the analytical expression (3.4). 

The data for additional heating, NI, and ICRH, are: beam turn-on time t,, =O, 

ymox = 192m 
t 

(JP-jP.,n)‘(lp..r-Jp.ioJ 

xmox q 1.2Om ,, Jhx 10 ’ I \ 

FIG. 11. Distribution of the poloidal current density in the burning INTOR plasma. The negative 
sign of this current density demonstrates the diamagnetism of the plasma. 
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beam turn-off time 2 B2 = 5 s, beam power P, = 20 MW, beam energy EB = 175 keV, 
ICRH turn-on time r,, = 1 s, ICRH turn-off time t,, = 5 s. The fractions of PB for 
the E,, E,/2, and E,/2 components, and geometrical injector data are the same as 
in the JET-calculations. The injected species is deuterium and co-injection is 
assumed. The mean initial deuteron and triton densities are n, = nT = 7 x 1013/cm3. 
The ICRH power is P,, = 40 MW. The impurity species are a-particles, oxygen, 
and iron. 

After the startup phase (5 s) the temperature control is switched on so that the 
maximum temperatures stay approximately constant ( T,,,x = Timax = 20 keV). The 
electron power balance shows that Pxp is lost mainly by conduction and radiation. 
The ions are heated by fusion (P,, = 15 MW). This power is almost removed by 
convection and the unloading process for stabilizing the temperature. A detailed 
analysis of the spectra of the emanating neutrals is given in Ref. [23]. These spectra 
had been taken as a basis to compute the evolution of the tritium density in the first 
wall of INTOR. 

The poloidal flux function during the burn phase is shown in Fig. 10. The 
Shafranov shift is d= 31 cm. Due to the comparatively high pressure gradient the 
diamagnetism becomes important and the poloidal current density (Fig. 11) is 
negative everywhere. At the magnetic axis a peak arises due to the condition that 
the poloidal current density has to vanish there. 

However, the maximum diamagnetic reduction for the toroidal field is only 
2.2 kG. In the analogous JET case the poloidal current density is negative at the 
plasma boundary and in the vicinity of the plasma center only, thus providing an 
example of a partly paramegnetic and partly diamagnetic plasma. The ohmically 
heated TEXTOR plasma is paramagnetic everywhere. 

CONCLUDING REMARKS 

The results demonstrate that the combined code provides the possibility to 
describe the interaction between the confining magnetic field and the particle and 
energy inventory of a Tokamak plasma. In particular, the time evolution of equi- 
libria can be computed on the rigorous basis proposed by Shafranov et al. [6]. 
Some aspects of plasma confinement, i.e., the computation of the coil currents 
maintaining the plasma equilibrium during the time evolution of the discharge can 
be treated in a rather general and straightforward way. This applies to all coil con- 
figuration of limiter Tokamaks. The extension to divertor configurations is possible 
and means in essence that some of the coil groups must be replaced by divertor 
multipoles to control the position of the x-points. To estimate the voltages driving 
the coil currents, the circuit data and the time dependence of the flux function at 
the coil positions can be employed. These voltages could be used as input for the 
free boundary problem discussed in Section 6; almost the same plasma shape and 
position as in the case of the semifree boundary value problem should be obtained, 
thus providing a valuable check. 
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However, one of the main tasks in tokamak physics, to understand the energy 
confinement on the basis of a stability analysis with respect to ideal and resistive 
MHD modes is not envisaged here in detail as it was attempted by other authors 
already [3, 53). It remains as an important task to use the equilibrium information 
for a mode analysis and to adjust the confinement properties accordingly. 
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